JAMES COOK UNIVERSITY

OF
NORTH QUEENSLAND

Teaching Computer Science as the Science
of Information

Gopal K. Gupta

TR 96/10

DEPARTMENT OF COMPUTER SCIENCE

TOWNSVILLE
QUEENSLAND 4811
AUSTRALIA

www.manharaa.com

Title Teaching Computer Science as the Science of Information
Primary Author(s) Gopal K. Gupta
Contact Information Gopal K. Gupta

Department of Computer Science
James Cook University
Townsville, QLD 4811
AUSTRALIA

gopal@cs. jcu.edu.au

Date July 22, 1996

Copyright © 1996 Gopal K. Gupta. All rights reserved.

www.manharaa.com

Teaching Computer Science as the Science of | nfor mation

Gopal K. Gupta
Department of Computer Science
James Cook Unersity
Townsville, Qld 4811
Australia

Abstract

During the last thirty years a number of model curricula for computer scienedxden
developed but computer science curriculum continues to be a topic of intense discussion
(see, for example, the debate in the December 1989 issue of the Communications of the
ACM). The introductory computer science teaching continues to be problematic with
mary departments reporting high drop-out and high failure rates in the introductory
courses. Mayistudents feel great deal of learning frustration and the introductory
courses hee keen criticized foramong other things, too much material, lack of insight-
building, and programming before reasoning.

We Lelieve that the cowmentional curricula and the solutions proposedviercome the
problems of the curricula share a similar approach to introductory teaching which
essentially imolves teaching procedural programming using an apprenticeship approach.
We Lelieve that mawy of the problems with camntional introductory curricula arise as a
result of following this basic approach and it is this approach that needs to change. We
suggest an alternate approach to teaching computer science that is based on information,
its processing, presentation and communication as the focus of computer science rather
than procedural programming. Programming continues to be an important part of the
proposed curriculum but it does not ocgube central place that it does in nganurrent
curricula. The curriculum includes a number of software engineering group projects and
the programming and softwarevé®pment learning takes place in these group projects.

A detailed introductory curriculum is presented and a fraank for designing the whole
computer science curriculum is discussed.

www.manaraa.com

1. Introduction

Computer Science curriculum has been a topic of intense discussion since the birth of the
discipline in the early 1968’(see, for example, the debate in Denning, 1989Mumber

of model curricula, including Curriculum 68, Curriculum 78 and, Curriculum 199%& ha
been deeloped by ACM and ha keen widely used as basis for curriculum design. A
number of other computing societiessdaso had their own recommendatioriBucker

and WWegner (1994) revier the evolution of the ACM curricula and discuss some

alternatves.

Curriculum 68 proposed a core curriculum of four basic courses: algorithms and
programming, computer and system structure, discrete structures, and numerical calculus,
followed by four intermediate courses: data structures, programming languages, computer
organisation, and system programming. Curriculum 78 placed emphasis on algorithms,
programming, data structures, and hardware and proposed¢hatemputer science
graduate should know: toto write programs, measure the efficigraf programs, know

what problems are amenable to computer solution, understand individual and team
problem solving, understand computer architectures, and be prepared to pursue in-depth
training or graduate study in computer science. In 1985, the ACM appointed a task force
on the core of computer science. The report of this task force (Deenahidl989)

defined computer science the systematic study of algorithmic processes that describe

and transform information; their theqgrginalysis, design, efficienaynplementation, and
application Nine areas of the discipline were identified: algorithms and data structures,
programming languages, architecture, numerical and symbolic computation, operating
systems, software methodology and engineering, database and informatioal retrie

artificial intelligence and robotics, human-computer communication. Based on this report,
Curriculum 91 was desloped that encourages inraion in curriculum design and
recommends a number of core courses (about 270 lectures, rather too large a core for a
three-year degree program) based on the nine areas listezl dthe core is dominated

by algorithms and data structures (47 lectures), architecture (59), programming languages
(46) and software methodology and engineering (44) leaving only 75 lectures for the
remaining fie aeas.

Given the ab@e recommendations, the introductory computer sciences courses continue
to teach problem solving, algorithm design, procedural programming, debugging and
testing, but we shwin the next section that such teaching continues to be problematic
with mary departments reporting high drop-out and high failure rates in such courses.
Many students feel great deal of learning frustration and the introductory courses ha
been criticized fqgramong other things, too much material, lack of insight-building, and
programming before reasoning. It is therefore essential that alier@agroaches to
teaching computer science bgkred. W explore one alternate approach in this paper.

The aim of this paper is to sidhat a viable alternate approach to teaching computer
science is possible and is worth considering. In the next section we first disguisgewh
present approach has not been successful and the problemwéhisdraidentified and
some solutions that i@ been proposed. This is followed, in Section 3, by the proposed
new approach for introductory computer science. In Section 4 we present a basic

www.manaraa.com

structure for building a whole mecomputer science curriculum. Section 5 concludes the
paper.

2. Introductory Computer Science Courses

Designing introductory computer science courses is particularly difficult since
introductory courses often try to meet a number of oljextivhich are not avays
compatible. Alsothe students attending introductory computer science courses often
have vay diverse backgrounds in mathematics and computing and the curriculum must
try to deal with the diersity. It is possible to hee wurses that either emphasise
programming but ignore breadth ofvabage or hae a lveadth-first course that\gs up
some of the programming emphasis. Often though, the first on@antwses are
dominated by programming and Tucker andgaér (1994) note that Brown Urarsity

CS1 course requires students to writeesa thousand lines of code in the first semester.

Most introductory computer science coursegehdojectives smilar to those listed by
Koffman, Miller and Wardle (1984) who present a model curriculum for an introductory
course CS1. These objacs ae:

* to introduce a disciplined approach to problem-solving methods and algorithm
development

* to introduce procedural and data abstraction

* to teach program design, coding, debugging, testing and documentation using good
programming style

* to teach a block-structured highwl programming language

* to provide a familiarity with the wlution of computer hardware and software
technology

» to provide a foundation for further studies in computer science

Koffmanet al(1984) present course details including information on the programming
language to be used andathe course should be administered andveedid. Thg note
thatprogramming assignments comprise a significant part of the student workload

In spite of the model curricula and some experimentation with them, the most intense
discussions in computer science curriculum design continue to be those related to
introductory courses (for recent examples, refer to Tucker aagh&¥ 1994, Scragg,
Baldwin and Kooment, 1994, Doran and Langan, 1996).example, the papers by
Scragget aland Doran and Langan present what in themnage symptoms of a number
of problems with introductory computer science courgesist of problems that are
responsible for these symptoms, in thewd these authors, are then identified and
solutions proposed. Shaw(1990) also lists a set of flaws in introductory courses.

Some of the symptoms identified by the authors of the papers citeel abdigh drop-

out rates in the undergraduate programs, in particular in the introductory courses,
complaints by the employers that the graduates are not able to apply whawbe

learned and high drop-out rates from computer science PhD programs (which presumably
reflects poor preparation). Although these symptoms are by no means found in all

-3

www.manaraa.com

computer science programs, yhee common enough to be familiar to most computer
science academics. Bagert, Maand Calloni (1995) gie an extreme example of drop-

out and failure rates in which a class of 216 students in first year was reduced to only five
graduates four years later.

Some of the problems thatJeabeen identified are:
(1) greatdeal of learning frustration
(2) poorlydefined exit behaviour
(3) toomuch material
(4) inappropriatemphasis on design
(5) lackof insight-building
(6) programmingrom scratch
(7) equatingorogram text with software
(8) programmingefore reasoning
(9) throvaway exercises

Yet other problems ha keen noted.For example, it has been noted that a computer
science curriculum is often an extended list of topics which attempts &ydhefield of
information technology Given the wide scope of the field, a sayvd the whole field is
generally not possible andyvgn the dynamic nature of the field, a seyvmay not @en

be desirable. Although m@rturricula hae a brge core, a student majoring in computer
science may graduate without haviny aanceptual understanding ofa@ven the very
basic software (e.g. a word processogpreadsheet or a simple DBMS) is designed or
works. Inaddition, the current computer science programs do not cater for the variety of
needs of the computing industry of today and tonwrrGiven that the courses for major
and non-majors are often different, the present computer science curriculum does not
appear to encourage cross-disciplinary education which the National Research Council
committee (Hartmanis and Lin, 1992) bebd to be somportant.

A problem that has not been identified in this context is that the present computer science
introductory courses appear to ihat attractive to many female studenkawe and

Leveson (1995) discuss some of the reasons fempercentage of female students in

most computer science classes and note the role of parents and teachers in shaping
attitudes of girls in schools. Girls also appear teehlass access to computers at home
compared to bgs. Whateer the reasons, anecdotal evidence suggests that fieiaale
students do not l&xthe emphasis on programming that is common in introductory

courses.

A number of other issues about introductory computer scienaeliean raised in the
literature. Thes@clude the following:

(&) whatprogramming language should be used in the introductory course?
(b) how should problem solving be taught?

www.manaraa.com

(c) how should program design be taught?

(d) whenshould object-oriented concepts be introduced?

(e) whatis the role of formal methods in introductory computer science?
() doescomputer science curriculum needs more or less mathematics?

Most of these discussions share the basic assumption that an introductory course should
have dbjectives amilar to those listed by Koffmaet al (1984).

A number of solutions he keen proposed to resahe problems listed abe. For

example, Shaw(1990) suggests that an introductory course should include a study of good
examples of software systems, learn more facts, modify and combine programs as well as
creating them, incorporate reference material as it becovadalde, and present theory

and models in the context of practice. The ACM task force (Deretiaf) 1989) claims

that fundamentals of the discipline are contained in three basic processes - theory,
abstraction and design in the nine areas listed eaB&sed on this report, Baldwet al

(1994) and Scraget al (1994) state that the central mission of their introductory

sequence is to teach design, theory and empirical analysis. Doran and Langan (1995)
take a \ery different approach. Theaefer to the six Ieels of learning in educational

process viz. knowledge, comprehension, application, analysis, synthesis and judgement
and comment that the introductory courses should try to primarily teach the first three
levels since the other three, analysis, synthesis and judgement, require a good mastery of
the first three and maturity gained by extended usage.

Although the abee lutions are likely to impnree introductory courses tlyare unlikely

to overcome the problems that arise because of the focus on algorithmic computation
using an apprenticeship approach. Astrachan and Reed (1995) in fact explicitly
recommend an apprenticeship approach in which students read, study and extend
programs written by experienced and expert programmers while others recommend group
learning, e.g. Sabin and Sabin (1994).

Many conventional introductory courses expect students to complete programming
assignments without a great deal of assistance. Basgia#y the examples in the class,
the students are expected to obtain the solutions to the assignmdistsavgrywhile

they are often still learning the syntax of a programming language. Pennington and
Grabowski (1990) discuss the taskgolwed in programming and tlgenote that
"..programmer must comprehend the problem to be solved bydgepr, design an
algorithm to solve the problem, code the algorithm into a conventiongtgmming
language, est the ppgram and male nodifications in the mrgram...In sum,

programming is a complecognitive and social task composed of a variety of interacting
subtasks and involving several kinds of specialized knoweléd@§rogramming therefore
is a creatie activity which involves synthesis of a variety of knowledge and, as noted
earlier is therefore a higher &l |earning process that requires mastery of at least
knowledge, comprehension and application. It may be that requiring synthesis early in an
introductory course is bound to create problems if the student has not acquired the
relevant knowledge, comprehension and application prior to starting the course.

www.manaraa.com

Although the abee gproach of teaching introductory courses for the computer science
majors is common, some educators recommend a similar approach for non-rReajors.
example, Biermann (1994) recommends that a significant part of a course for non-majors
be programming. The author claims that one of the reasons for teaching programming in
an introductory course is thitcatches the attention of students....Most students enjoy the
[programming] experience and want to showtbéir programd The author notes other
reasons for teaching programming and notes that programmingysanknd of

intuition about computers and programming experience is excellent for teaching notation.
This is hardly a convincing argument in ourwie

The cowentional approach we belie has sgeral significant disadantages. The
apprenticeship approach appears suitable only for learning trade or technical skills and is
perhaps not suitable for learning conceptual material. Also, apprenticeship approach is
often ineffectve due to a lack of sthfesources and results imepage students constantly
battling with programming assignments and thus having no time to consider the
conceptual basis of the discipline. Due to heavy assignments worklogdsncan

students drop out or switch to other disciplines after (or before!) completing the first
course in computer science. Also, the introductory curriculum itself often is not
particularly suitable since it caays to he students a very limited wieof computer

science. Thetudents are gen the impression that a computing professional is

constantly been gen problems to solg which he/she must find solutions to and code the
solutions and debug and document that code. This is far from the true nature of work of a
computing professional.

Given the cowentional curriculum, it is no wonder that mastudents remark that
computer science is just programming; that is what we tell the students in our
introductory courses as noted by Dennatigl (1989):

The viewv that "computer science equals programming" is especially strong in most of
our current curricula: the introductory course is programming, the technology is in our
core courses, and the science in our elestiThis viev blocks progress in regenizing

the curriculum and turnswaay the best students, who want a greater challenge.The
emphasis on programming arises from our long-standing belief that programming lan-
guages are excellent vehicles for gaining access to the rest of the field, a belief that limits
our ability to speak about the discipline in terms thagakits full breadth and richness.
....... Clearly piogramming is part of the standdupractices of the discipline andrery
computing major should a&e&ve competence in it. This does not, haayeémply that the
curriculum should be based onggramming or that the intductory courses should be
programming course§emphasis added]

Another significant disadvantage of the wanrtional approach is that the introductory
curriculum is too dependent on changes in technology which an introductory course
ought not to be. Ne programming languages andmprogramming paradigms often
need to be reflected in the introductory courses and the curriculum discussions in
computer science departments are often dominated by whether the programming
language being used needs to be changed to the latest one to the neglect of more
important issues. Such language discussious been known to turn into religious wars
that can do serious damage to the fabric of a department. Programming of course not

www.manaraa.com

only plays a central role in introductory courses, it tends to play a central role in most
subsequent courses since the attitude that one can only learn by implementing pervades
the whole cowventional computer science curriculum. v@én this approach, a change in
programming language used in the introductory course can briog tathe whole

curriculum which can consume enormous amount\@uble stafresources in revising

the course materials.

To summarise, we beliee the current introductory computer science courses ke
following problems:

(1) thecurriculum focuses on programming and algorithmic computation and does
not present a broad picture of computer science

(2) thecurriculum requires too much programming which is often intimidating for at
least a significant minority of students, perhaps more so with the female students

(3) thecurriculum uses an apprenticeship approach which is unsuitable for some
types of learning and the approach is often very time consuming for most
students gien the lack of stdfresources; the high workload often results in
students either dropping out of the computer science course or neglecting their
other studies

(4) thepass rates in courses based on such curriculum are oftendiothe drop-out
rates high; retention of less than 50% after first year courses appears common but
in our vienv unacceptable

(5) althoughthe programming assignments can be time-consuming, the curriculum
corveys few intellectual challenges to some of the brightest students

3. A New Approach to Teaching Computer Science

We Lelieve a dfferent approach to teaching computer science is needed not only because
the present approach suffers from significant difficulties but also because computing and
the computing industry e changed dramaticallyver the last four decades. In the early
days the primary concern was to keep the hardware running and its efficiel¥itise.

more reliable hardware, the concern shifted to system software and then to application
software. Theconcern is na shifting to information storage, retsel, display and
presentation. Aa result, the role of programming and growth in jobs for programmers
have dminished considerably in the industry (Keaton and Hamilton, 1996) and instead
there are significantly more opportunities for people with a variety of other skills (e.g.
networking, Web applications)/Ve telieve a rew airriculum should meet a variety of

needs of the industryot be technology dven, provide a good introduction to computer
science, and be realistic for the educationgirenment. D be ealistic, for example in
Australia, the curriculum must taknto account the fact that a large number of students
now enter unversities without adequate preparation in mathematics. Furthermore, the
curriculum must tai into account that not all students studying computer science are
going to be very proficient in programming and softwaneld@ment and some may not

be capable of or interested in becoming softwaweldpers although still interested in
developing some computing knowledge angertise. Furthermorenary degee

www.manaraa.com

programs, for example those in Australia, are of only three-year duration and therefore
the course time is a very limited resource which must be used wiBaly clearly

suggests that proposalsdikhose of Dijkstra (Denning, 1989) in which he suggests that
each program must be accompanied by a formal proof that it meets the formal
specifications and those of Parnas (1990) in which he proposes a computing program that
is a five-year engineering degree (and doesvest grovide an introduction to data base
management) are not worth considering sincg finepose solutions that in our weare
unrealistic.

Computer systems consist essentially of hardware, software and the information that they
process. d@king a rather simple we one could say that these three components are the
centre of attention in the three computing disciplines viz. computer systems engineering,
computer science, and information systems. The information systewsfvie

information is howeer very limited since that discipline is primarily concerned with role

of information in decision-making. Information has mammensions and in fact meets

mary needs in addition to that of decision-making and all computing essentially deals

with information. We pgropose that a very much broaderwief information be the basis

of computer science curriculum and we agree with Denning (1995) that a computer
science program should be taught as the science of information. Computer science
should therefore h& the concept of information, its manipulation, communication and
display as its focus rather than algorithmic computation. As Denning notes, information

is a powerful metaphpoften compared with fluid that can Wphavea source, and be
extracted, transformed, acquired and contained; data, symbols, signals and messages are
carriers of the fluid of information. Just as phenomena surrounding fluids are/wbrth
scientific studyso ae phenomena surrounding information, only more so since

information is n@v so nuch more widely used.

If information, its manipulation, communication, and display are to be the central concern
of computer science, the introductory computer science course as well as the courses that
follow will be significantly different than what we teach tod#&s an &le, we

propose that an introductory course consist of the following topics; the details are
presented in the next section:

(1) theconcept of information, its mgrforms, its storage and retvas, its value, the
need for man different types of information manipulation.

(2) computerss (simple) machines that manipulate information; a simple
introduction to computer genisation.

(3) theneed to input information to computers and to output information from
computers so that input information may be manipulated and manipulated
information displayed; the need for nyadiifferent types of input and output.

(4) theneed to store information in computers; techniques for storing and retrieving
information.

(5) theconcept of ownershipyailability and fair use of information; issues of
copyright, personal pracy, information rich and information pogaathics.

www.manaraa.com

(6) theneed to communicate information from an input device to a computer and
from a computer to an output device; communication of information from one
computer to another.

(7) theneed to manipulate information (mathematical computations, symbolic
computations, intelligence); techniques for simple information manipulation,
comple information manipulation.

(8) instructingthe machine to manipulate information; introduction to one procedural
language; examples of algorithms and their implementations using the language,
debugging, testing, and documentation.

3.1. A Detailed Curriculafor CS1

We row present details of the lectures and the laboratory classes of the introductory
curriculum:

(1) Theconcept of information and its many forms:
What is information?Its definition and characteristics.
Temporal and non-temporal information.

Non-temporal informationlex; linear and non-linear text; LineaeX: text
without form and text with form; text without form, sequence of characters, how
mary different characters, ASCII, ISO character sets, character sets for LOTE;

Text with form, need to store content and form both, storing form by using mark-
up languages (troff, latex, SGML, ODA), storing form by specifying form in a
WYSIWIG editor;

Presentation, fonts, device independent fonts, storage and printing of fonts,
geometric descriptions of fonts, kerning, PostScript.

Non-linear form of text: hypertext, representation of hypertext, Web.

Operations on text: retwel, character and string operations, editing, formatting,
pattern-matching and searching, spell checking, style checking, compression,
encryption.

Images: Image as a two-dimensional array of pixels, monochromg,agick

colour images; colour models, representation of images. Operations on images:
editing, point operations, filtering, compositing, geometric transformations,
corversions, compression.

Graphics Difference between graphics and image data; representation of
graphics data, geometric modelling (GKS, PHIGS, etc), solid models, other
models. Operations on graphics data: editing, shading, mapping, lighting,
viewing, rendering.

Temporal Data - VideoVideo as sequence of images or frames, analogue video
and digital video, analogue representation and major formats (NTSC, PAL,
SECAM, etc), video storage, digital representation, data rates, digital video

www.manaraa.com

storage. Operations on video: video sources and sinks, videqg retxexal,
editing, compression of digital video, MPEG, JPEG, etc.

Temporal Data - AudioDigital and analogue audio representation, speech,
encoding, audio formats (CDAD, etc). Operations: storage, reti@ég editing
and filtering.

Temporal Data - MusicDifference between music and audio; representing music
(MIDI, SMDL). Operations: playback, synthesis, editing, composition.

Animation- Sequence of synthetic image frames, animation vs video, animation
models. Operations: motion and parameter control, rendering.

Information transformation Transforming text to audio, speech to text, music to
audio, animation to video, etc. Refer to Gibbs and Tsichritzis (1994) page 77.

Optionat What is knowledge? representing knowledge e.g. plans, games, rules,
etc.; natural language representation and understanding.

Laboratory: Students use softwares that processes textual information e.g. mark-
up languages, WYSIWIG editors, hypertext using the Web and carry out the
operations specified including compression and encryption. Importance of
information presentation.

Students handle a variety of images and use software that carries out operations
on images. Graphics information. Video, audio, speech, music and animation
information and use of softwares for variety of operations on these types of
information.

(2) Information storage and retrieval, value of infor mation, need for many
different types of manipulation, etc .

Manual storage and retvid of information in society; @anisation of large
amounts of information on paper; books, chapters, table of contents, index,
telephone directorychildren’s dory books that ally the reader some options on
how the story deelops, oganisation of books in libraryfiles and filing cabinets
in a office, iventories, archiving, introduction of terms dilequential, index
sequential, trees; analogies between manual information handling and
information handling by computers.

Information as a commodity and its unique properties, needs of graphical display
of information, computing agggete values, and other manipulations.

Laboratory: A study of manual information storage and retde Discussiorof
different possible techniques, introduction to some computing terminology.
Discussion of information as commodity and its value, examples of valuable and
useless information. Importance of information presentation.

(3) Computersas (simple) machinesthat manipulate information; smple
introduction to computer organisation.

-10-

www.manaraa.com

(4)

(5)

(6)

Conceptual model of a computeomputer examples: computer games, ATM, a
computer in a washing machine or a, ¢arge mainframes, desktop, laptop and
mobile computers. Concept of instructing computers; analogies between
instructing a computer and instructing a human worker.

Laboratory: Explore students’ prior experiences with computers, their
understanding of what is inside a compuskow inside of a computer to
students, discuss essential components and loggadisation.

The need to input information to computers and to output information from
computers so that information may be manipulated and manipulated
information may be displayed; The need for many different types of inputs
and outputs.

Input to computers viagyboard, scanners, cameras, speech, instruments, touch
screens, pen, mouse, joystick, etc., conceptual understanding tidse

devices work, importance of of devicesdigcanners and fax and their working;
importance of user-friendly information input.

Output from computers via monitors, printers of different types, speech, music,
graphical output, control signals, etc; conceptual understandingwtihese
devices work, importance of user-friendly information output.

Laboratory: Use a variety of input and output devices, understanding of how
these devices work, importance of user-friendly interaction with computers.

The need to storeinformation in computers, techniquesfor storing and
retrieving information.

Introduction to storage devices: core memadigks, CD-ROMS, tapes etc,
introduction to data structures (sequential, xedesequential, trees, hashing),
concept of relational database and a simple k@rianguage; analogies between
manual and computer storage and re#tief information.

Laboratory: Recall techniques of manual storage and redfief i nformation;
present examples where data structure is important; simple relational database
representation, simple retvié language, use of a PC database system.

The concept of owner ship, availability and fair use of infor mation; issues of
copyright, personal privacy, information rich and information poor, ethics.

Who owns information? access to information held by public andteri
organisations, intellectual property rights, concept of informationgpyi
information prvacy principles, information sociefgoncept of information rich
and poor societies, ethics for information processing professionals.

Laboratory: Recall value of information discussion, difficulties in obtaining
relevant information, role of technologies ékhe Web in making information
accessible, discussion of ownership of information and intellectual prpperty
rights on the Web, cases of violation ofvady using database systems, credit

-11-

www.manaraa.com

data, medical data,etc, ethical behaviour by computing professionals, code of
ethics of medical andd@l professions.

(7) Theneed to communicate information from an input device to a computer
and from a computer to an output device; also sending information from one
computer to another.

Computer communications, email, internet, wwmetworks, mobile computing,
conceptual understanding ofnehey work.

Laboratory: Hand-on experience with computer communications, role of
communications in modern computing industise of variety of tools that
require communications e.g. email, internet, WWW ana tihey work,
evdution of mobile computing, demonstration of mobile computing.

(8) Theneed to manipulateinformation (mathematical computations, symbolic
computations, intelligence); techniques for simple information manipulation,
mor e complex information manipulation.

Information manipulation viavailable packages, word processing, spreadsheets,
graphics packages, mathematical computation packages, expert systems.
Examples where a package will not do the job.

Laboratory: Use of variety of packages to illustrateahoff-the-shelf software

can meet a variety of information manipulation needs. Recall word processors for
textual and some graphical information, spreadsheets for simple calculations,
discussion of conceptual basis ofshthese tools work, graphics packages for

data visualisation, packages for mathematical computations, authoring systems,
expert systems, etc.

(9) Theneed to specify information manipulation to the machine; introduction
to one procedural language; examples of algorithms and their
implementations using the language, debugging, testing, and documentation.

Procedural and non-procedural languages, machine code, assembf@nents

of a procedural language, introduction to one procedural languages, examples of
algorithms, simple programs implementing those algorithms, extension of those
algorithms and programs, the importance of debugging, testing, and documenting
software.

Laboratory: Discussion of what a language must be able to do to provide
instructions to a machine; procedural instructions using machine language,
assemblers, and a modern procedural language; example of one non-procedural
languages; discussion of algorithms for simple problems, problem solving, study
of programs that implement these algorithms, saldightly changed problem

by modifying the algorithm and the program, discussion of debugging, testing
and documentation.

A major disadvantage of this approach clearly is that there is little teaching material
available, although the books by Machlup and Mansfield (1983) and Gibbs and

-12-

www.manaraa.com

Tsichritzis (1994) provide valuable resource material. The@lgmproach howeer

offers significant advantages that weviscuss. Irour view, the approach leads to a

much more comprehens view of computer science with the role of programming more
clearly defined. The approach we hope is less time-consuming for the student since it is
not driven by programming assignments. Learning of programming takes place at a

much more gentle pace allowing the student the timeveajethe knowledge,
comprehension and application that is required. Also, the approach allows a student who
has only limited interest in computer programming teettile core computer science

courses perhaps with their other academic interests (e.g. mathematics, visual art). Also,
this course could well be more enjoyable for female studeves thie reduced emphasis

on programming. Furthermore, the course allows the studentséimp@ good

conceptual understanding of the basic software toasatkd processors, spreadsheets,
DBMS, Internet and the Web and some mathematical software and provides them with an
understanding of devices that ytee likely to hae wsed already (e.g. fax, scann€b).

A student is also able to build insight by making connections between information
processing by computers and information processing in the oell.wAndfinally, as

more and more students come toversities after having learned some computing, this
course provides them a very different introduction to computing, an introduction that
provides a better understanding of the discipline.

4. Coursesthat Follow

It is not possible in this short paper to present a whole computer science currisd\um.
however present a frameork that we beliee awuld be followed.

In designing the courses that fallowe use an approach that provides for considerable
flexibility. The approach allows for a mathematically inclined student who does not wish
to take too much programming to taka rumber of courses thatvalve little

programming. Astudent more interested in programming is allowed considerable choice
of software engineering projects that should provide him/her an excellent background in
software deelopment.

We dvide our curriculum in three streams; science of information, design and
implementation, and theory and analysis. The science of information courses essentially
deal with information representation, storage, refiecommunication, and presentation

but do not include detailed analysis and implementation. Analysis and other theory is
covered in the theory and analysis stream of courses while the implementatiomerisdco

in design and implementation software engineering group project courses that bring
together material from a number of courses and include significant softwatepeent.

(1) Slcourses - a number of courses in what we call science of information, some of
these form the core.

(2) Dlcourses - a number of design and implementation software engineering group
project courses that are optional.

(3) TA courses - a number of theory and analysis courses that are optional and
require good mathematical preparation.

13-

www.manaraa.com

The abee dassification allows a number of different groups of students to follow
different curriculum as follows:

(@) Service teachingstudents who ha ro deep interest in computer science but wish
to learn some computing and some computing tooksttekcore courses but do not
need to tak cwourses in theory or design and implementation.

(b) Mathematically inclined non-majsiinterested in computer scien@ich students
take the core courses and mayéaome theory courses. Theo not need to take
ary design and implementation courses.

(c) Computer Science mapwithout sufficient mathematics backgroudch students
take the core courses and the design and implementation courses but de rfwe tak
theory courses.

(d) Computer Science mapwnith sufficient mathematics backgrour@lich students
take the core courses, the theory courses and also the design and implementation
courses. Thiss the background that should be required for students who wish to
continue to postgraduate studies in computer science.

We row briefly discuss some of the courses.

4.1. S| Courses

A number of Sl courses need to bedeped and some of them should be part of the
core that eery student should be required to do. Let the courses be labelled SI1, SI2,
SI3, etc.

SI1 has already been presented in the last section. SI2 and SI3 may consist of the
following:

Information storage and retvd - memories, data structures, databases and artificial
intelligence.

Sl4 and SI5 may consist of the following

Information input/output, human machine interaction, graphics, image processing ??
S16 may consist of the following:

Computer architecture
SI7 may consist of the following:

Information communication, information security network, parallel processing,
compilers

4.2. DI Courses

The design and implementation software engineering project courses essentially deal with
implementation of techniques thatwikdeen coered in the core Sl courses. Each DI

course should be provided more ttalsources than each of the Sl érdourses.

Perhaps each DI course could consist af ectures per week and a four-hour practical
session each week compared to three lectures and a 2-3 hour tutorial each week. Each
course will consist of one major group project and maxe l®@me much smaller

-14-

www.manaraa.com

individual assessment items. At least one DI course is proposed for each year in a three-
year degree program.

The course DIP1 may consist of the following:
Procedural programming, design and implementation of a group project.
DIP2 may consist of the following:

Techniques and Tools - programming languages, software engineering, object-
oriented programming etc. Group projectalving data structures and algorithms
and/or database management system.

DIP3 may consist of the following:

A group project dealing with one of\s®al aspects of computer science e.g.
artificial intelligence, graphics, image processing, etc.

4.3. TA Courses

A number of courses, perhapsaar three, will be needed in this area. The topics to be
covered include the following:

Limits and complexity of information manipulation, analysis of algorithms,
computability finite state automata, formal languages, grammars etc

5. Conclusions

Given the dramatic changes in computing and the computing indasgmgstion that

must be asked is "are the traditional curricula becoming obsolete eadhbaperhaps
outlived their usefulness?"We ae inclined to beliee that they haveand that is wirwe
propose an alternate approach to designing computer science curriciihave

presented an introductory computer science curriculum that is significantly different than
ary proposal that we kn. The proposed curriculum is, in our wigexciting since it
approaches computer science from an information focussed pointofvhieh enables

a much broader vie of computer science to be presented in the first course.

The nev approach has a number of other adiages. Thproposal defers and isolates
major programming to the design and implementation group project courses where the
primary focus is on implementation and where we belmfficient staf resources ought

to be provided to guide the students to good implementations. This approach we belie
reduces the frustration and workload in the first course allowing the student to focus on
the conceptual basis of the discipline. The introductory course uses computer as a tool
which is likely to be more interesting to students rather than a machine which must be
tamed, something that perhaps the male studentg ewjee. Theintroductory course

also provides conceptual understanding of a number of useful computing tools e.g. word
processors, spreadsheets, Internet and the Web, mathematical software and DBMS.
Furthermore, the course provides the students an understanding of devicey ttrat the
likely to have wsed already e.g. a CD, video, fax, scanner etc and makes a connection
between information processing by computers to that in the real world.

-15-

www.manaraa.com

We recognise that our proposal is not without a number of weaknesses., Kirgtly/not

been tried anywhere and it is therefore difficult to predict the reaction of students to such
a radical shift in curriculum.We suspect at least a number of students who are very keen
to get on with the 'real computing’ (i.e. programming) may well be disappointed but we
are hopeful thatwen these students would find the group project environment early in the
program more interesting compared to the small programming assignments normally
given in the introductory courses.

Acknowledgements

A number of people ha helped me in putting these ideas togethas a deasure to
thank Reinhart GillnerShyam Kapuy Bruce Litow, Tony Sloane, Rodng Topor, Chris
Wallace, and David Wessels.

6. References

(1) ACM Curriculum Committee on Computer Science, Curriculum 68:
Recommendations for the undergraduate program in computer science,
Communications of the ACM, Vol 11, No 3, pp 151-197.

(2) ACM Curriculum Committee on Computer Science, Curriculum 78:
Recommendations for the undergraduate program in computer science,
Communications of the ACM, Vol 22, No 3, pp 147-166.

(3) O.Astrachan and D. Reed (1995), AAA and CS1: The Applied Apprenticeship
Approach to CS1, ACM SIGCSE Bulletin, Vol 27, No 1, pp 1-5.

(4) D.Bagert, WM. Marcy and B. A. Calloni (1995), A SuccessfuMeiYear
Experiment with a Breadth-First Introductory Course, SIGCSE Bulletin, Vol 27,
No 1, pp 116-120.

(5) D.Baldwin, G. Scragg and H. Kooment (1994), A Three-Fold Introduction to
Computer Science, SIGCSE Bulletin, Vol 26, No 1, pp 290-294.

(6) A.W. Biermann (1994), Computer Science for the yJdBEE Computer,
February 1994, pp. 62-67.

(7) P J.Denning (Ed.) (1989), Teaching Computer Science, Communications of the
ACM, Vol 32, No 12, Dec 1989, pp 1397-1414.

(8) PR J.Denning, D. E. ComeD. Gries, M. C. MoulderA. B. Tucker A. J. Turner
and PR. Young (1989), Computing as a Discipline, Communications of the
ACM, Vol 32, No 1, pp 9-23.

(9) PR J.Denning (1995), Can There be a Science of Information?, ACM Computing
Sunweys, Vol 27, No 1, March 1995, pp 23-25.

(10) M.V. Doran and D. D. Langan (1995), A CogmitiBased Approach to
Introductory Computer Science Courses: Lessons Learned, SIGCSE Bulletin, Vol
27, No 1, pp 218-222.

(11) S.J. Gibbs and D. C. Tsichritzis, Multimedia Programming, Addison-Wesle
1994.

-16-

www.manaraa.com

(12) L.Goldschlager and A. Lister (1988), Computer Science: A Modern Introduction,
Second Edn, Prentice Hall.

(13) J.Hartmanis and H. Lin (1995), Computing the Future: A Broader Agenda for
Computer Science and Engineering, National Academy Press, Washington, DC,
1992.

(14) M.Klawe and N. Leeson (1995), Women in Computing: Where are Méw?,
Communications of the ACM, Vol 38, No 1, Jan 1995, pp 29-35.

(15) J.Keaton and S. Hamilton (1996), Employment 2005: Boom or Bust for
Computer Professionals, IEEE Compuiday 1996, Vol 29, No. 5, pp. 87-98.

(16) E.P. Koffman, PL. Miller and C. E. Wardle (1984), Recommended Curriculum
for CS1: 1984 a report of the ACM Curriculum task force for CS1,
Communications of the ACM, Vol 27, No 10, pp 998-1001.

(17) E.P. Koffman, D. Stemple and C. E. Wardle (1985), Recommended Curriculum
for CS2, CACM, Aug 1985, Vol 28, pp 815-818.

(18) E Machlup and U. Mansfield, Eds. (1983), The Study of Information :
Interdisciplinary Messages, Wjle

(19) D.L. Parnas (1990), Education for Computing Professionals, IEEE Computer,
Jan 1990, pp 17-22.

(20) N.Pennington and B. Grabowski (1990), The Tasks of Programming, in
Psychology of Rigramming J. M, Hoc, T R. G. Geen, R. Samurcay and D. J.
Gilmore (Eds.), Academic Press, 1990, pp. 45-62.

(21) R.E. Sabin and E..Babin (1994), Collaborate Learning in an Introductory
Computer Science Course, SIGCSE Bulletin, Vol 26, No 1, pp 304-308.

(22) G.Scragg, D. Baldwin and H. Kooment (1994), Computer Science Needs an
Insight-Based Curriculum, SIGCSE Bulletin, Vol 26, No 1, pp 150-154.

(23) M. Shawv (1990), Informatics for a Ne Century: Computing Education for the
19905 and Beyond, TR CMU-CS-90-142, Department of Computer Science,
Carnegie Mellon Umniersity, Rittsburgh, USA.

(24) A.B. Tucker and PNegner (1994), Nev Directions in the Introductory Computer
Science Curriculum, SIGCSE Bulletin, Vol 26, No 1, pp 11-15.

(25) A.B. Tucker Editor, Computing Curriculum 1991: Report of the ACM/IEEE-CS
Joint Curriculum Task Force vailable from ACM Press or IEEE Computer
Society Press, 1990.

-17-

www.manaraa.com

