
www.manaraa.com

Teaching Computer Science as the Scienceof InformationGopal K. GuptaTR 96/10
JAMES COOK UNIVERSITYOFNORTH QUEENSLAND

DEPARTMENT OF COMPUTER SCIENCE TOWNSVILLEQUEENSLAND 4811AUSTRALIA

www.manaraa.com

Title Teaching Computer Science as the Science of InformationPrimary Author(s) Gopal K. GuptaContact Information Gopal K. GuptaDepartment of Computer ScienceJames Cook UniversityTownsville, QLD 4811AUSTRALIAgopal@cs.jcu.edu.auDate July 22, 1996

Copyright c
 1996 Gopal K. Gupta. All rights reserved.

www.manaraa.com

Teaching Computer Science as the Science of Information
Gopal K. Gupta

Department of Computer Science
James Cook University
To wnsville, Qld 4811

Australia

Abstract
During the last thirty years a number of model curricula for computer science have been
developed but computer science curriculum continues to be a topic of intense discussion
(see, for example, the debate in the December 1989 issue of the Communications of the
ACM). The introductory computer science teaching continues to be problematic with
many departments reporting high drop-out and high failure rates in the introductory
courses. Many students feel great deal of learning frustration and the introductory
courses have been criticized for, among other things, too much material, lack of insight-
building, and programming before reasoning.

We believe that the conventional curricula and the solutions proposed to overcome the
problems of the curricula share a similar approach to introductory teaching which
essentially involves teaching procedural programming using an apprenticeship approach.
We believe that many of the problems with conventional introductory curricula arise as a
result of following this basic approach and it is this approach that needs to change. We
suggest an alternate approach to teaching computer science that is based on information,
its processing, presentation and communication as the focus of computer science rather
than procedural programming. Programming continues to be an important part of the
proposed curriculum but it does not occupy the central place that it does in many current
curricula. The curriculum includes a number of software engineering group projects and
the programming and software development learning takes place in these group projects.
A detailed introductory curriculum is presented and a framework for designing the whole
computer science curriculum is discussed.

-1-

www.manaraa.com

1. Introduction
Computer Science curriculum has been a topic of intense discussion since the birth of the
discipline in the early 1960’s (see, for example, the debate in Denning, 1989).A number
of model curricula, including Curriculum 68, Curriculum 78 and, Curriculum 1991, have
been developed by ACM and have been widely used as basis for curriculum design. A
number of other computing societies have also had their own recommendations.Tucker
and Wegner (1994) review the evolution of the ACM curricula and discuss some
alternatives.

Curriculum 68 proposed a core curriculum of four basic courses: algorithms and
programming, computer and system structure, discrete structures, and numerical calculus,
followed by four intermediate courses: data structures, programming languages, computer
organisation, and system programming. Curriculum 78 placed emphasis on algorithms,
programming, data structures, and hardware and proposed that every computer science
graduate should know: how to write programs, measure the efficiency of programs, know
what problems are amenable to computer solution, understand individual and team
problem solving, understand computer architectures, and be prepared to pursue in-depth
training or graduate study in computer science. In 1985, the ACM appointed a task force
on the core of computer science. The report of this task force (Denninget al, 1989)
defined computer science asthe systematic study of algorithmic processes that describe
and transform information; their theory, analysis, design, efficiency, implementation, and
application. Nine areas of the discipline were identified: algorithms and data structures,
programming languages, architecture, numerical and symbolic computation, operating
systems, software methodology and engineering, database and information retrieval,
artificial intelligence and robotics, human-computer communication. Based on this report,
Curriculum 91 was developed that encourages innovation in curriculum design and
recommends a number of core courses (about 270 lectures, rather too large a core for a
three-year degree program) based on the nine areas listed above. The core is dominated
by algorithms and data structures (47 lectures), architecture (59), programming languages
(46) and software methodology and engineering (44) leaving only 75 lectures for the
remaining five areas.

Given the above recommendations, the introductory computer sciences courses continue
to teach problem solving, algorithm design, procedural programming, debugging and
testing, but we show in the next section that such teaching continues to be problematic
with many departments reporting high drop-out and high failure rates in such courses.
Many students feel great deal of learning frustration and the introductory courses have
been criticized for, among other things, too much material, lack of insight-building, and
programming before reasoning. It is therefore essential that alternative approaches to
teaching computer science be explored. We explore one alternate approach in this paper.

The aim of this paper is to show that a viable alternate approach to teaching computer
science is possible and is worth considering. In the next section we first discuss why the
present approach has not been successful and the problems that have been identified and
some solutions that have been proposed. This is followed, in Section 3, by the proposed
new approach for introductory computer science. In Section 4 we present a basic

-2-

www.manaraa.com

structure for building a whole new computer science curriculum. Section 5 concludes the
paper.

2. Introductory Computer Science Courses
Designing introductory computer science courses is particularly difficult since
introductory courses often try to meet a number of objectives which are not always
compatible. Also,the students attending introductory computer science courses often
have very diverse backgrounds in mathematics and computing and the curriculum must
try to deal with the diversity. It is possible to have courses that either emphasise
programming but ignore breadth of coverage or have a breadth-first course that gives up
some of the programming emphasis. Often though, the first one or two courses are
dominated by programming and Tucker and Wegner (1994) note that Brown University
CS1 course requires students to write several thousand lines of code in the first semester.

Most introductory computer science courses have objectives similar to those listed by
Koffman, Miller and Wardle (1984) who present a model curriculum for an introductory
course CS1. These objectives are:

• to introduce a disciplined approach to problem-solving methods and algorithm
development

• to introduce procedural and data abstraction

• to teach program design, coding, debugging, testing and documentation using good
programming style

• to teach a block-structured high-level programming language

• to provide a familiarity with the evolution of computer hardware and software
technology

• to provide a foundation for further studies in computer science

Koffmanet al (1984) present course details including information on the programming
language to be used and how the course should be administered and delivered. They note
thatprogramming assignments comprise a significant part of the student workload.

In spite of the model curricula and some experimentation with them, the most intense
discussions in computer science curriculum design continue to be those related to
introductory courses (for recent examples, refer to Tucker and Wegner, 1994, Scragg,
Baldwin and Kooment, 1994, Doran and Langan, 1995).For example, the papers by
Scragget aland Doran and Langan present what in their view are symptoms of a number
of problems with introductory computer science courses.A l ist of problems that are
responsible for these symptoms, in the view of these authors, are then identified and
solutions proposed. Shaw(1990) also lists a set of flaws in introductory courses.

Some of the symptoms identified by the authors of the papers cited above are high drop-
out rates in the undergraduate programs, in particular in the introductory courses,
complaints by the employers that the graduates are not able to apply what they hav e
learned and high drop-out rates from computer science PhD programs (which presumably
reflects poor preparation). Although these symptoms are by no means found in all

-3-

www.manaraa.com

computer science programs, they are common enough to be familiar to most computer
science academics. Bagert, Marcy and Calloni (1995) give an extreme example of drop-
out and failure rates in which a class of 216 students in first year was reduced to only five
graduates four years later.

Some of the problems that have been identified are:

(1) greatdeal of learning frustration

(2) poorlydefined exit behaviour

(3) toomuch material

(4) inappropriateemphasis on design

(5) lackof insight-building

(6) programmingfrom scratch

(7) equatingprogram text with software

(8) programmingbefore reasoning

(9) throwaway exercises

Yet other problems have been noted.For example, it has been noted that a computer
science curriculum is often an extended list of topics which attempts to survey the field of
information technology. Giv en the wide scope of the field, a survey of the whole field is
generally not possible and, given the dynamic nature of the field, a survey may not even
be desirable. Although many curricula have a large core, a student majoring in computer
science may graduate without having any conceptual understanding of how even the very
basic software (e.g. a word processor, a spreadsheet or a simple DBMS) is designed or
works. Inaddition, the current computer science programs do not cater for the variety of
needs of the computing industry of today and tomorrow. Giv en that the courses for major
and non-majors are often different, the present computer science curriculum does not
appear to encourage cross-disciplinary education which the National Research Council
committee (Hartmanis and Lin, 1992) believed to be so important.

A problem that has not been identified in this context is that the present computer science
introductory courses appear to benot attractive to many female students. Klawe and
Leveson (1995) discuss some of the reasons for low percentage of female students in
most computer science classes and note the role of parents and teachers in shaping
attitudes of girls in schools. Girls also appear to have less access to computers at home
compared to boys. Whatever the reasons, anecdotal evidence suggests that many female
students do not like the emphasis on programming that is common in introductory
courses.

A number of other issues about introductory computer science have been raised in the
literature. Theseinclude the following:

(a) whatprogramming language should be used in the introductory course?

(b) how should problem solving be taught?

-4-

www.manaraa.com

(c) how should program design be taught?

(d) whenshould object-oriented concepts be introduced?

(e) whatis the role of formal methods in introductory computer science?

(f) doescomputer science curriculum needs more or less mathematics?

Most of these discussions share the basic assumption that an introductory course should
have objectives similar to those listed by Koffmanet al (1984).

A number of solutions have been proposed to resolve the problems listed above. For
example, Shaw(1990) suggests that an introductory course should include a study of good
examples of software systems, learn more facts, modify and combine programs as well as
creating them, incorporate reference material as it becomes available, and present theory
and models in the context of practice. The ACM task force (Denninget al, 1989) claims
that fundamentals of the discipline are contained in three basic processes - theory,
abstraction and design in the nine areas listed earlier. Based on this report, Baldwinet al
(1994) and Scragget al (1994) state that the central mission of their introductory
sequence is to teach design, theory and empirical analysis. Doran and Langan (1995)
take a very different approach. They refer to the six levels of learning in educational
process viz. knowledge, comprehension, application, analysis, synthesis and judgement
and comment that the introductory courses should try to primarily teach the first three
levels since the other three, analysis, synthesis and judgement, require a good mastery of
the first three and maturity gained by extended usage.

Although the above solutions are likely to improve introductory courses they are unlikely
to overcome the problems that arise because of the focus on algorithmic computation
using an apprenticeship approach. Astrachan and Reed (1995) in fact explicitly
recommend an apprenticeship approach in which students read, study and extend
programs written by experienced and expert programmers while others recommend group
learning, e.g. Sabin and Sabin (1994).

Many conventional introductory courses expect students to complete programming
assignments without a great deal of assistance. Basically, giv en the examples in the class,
the students are expected to obtain the solutions to the assignments bydiscoverywhile
they are often still learning the syntax of a programming language. Pennington and
Grabowski (1990) discuss the tasks involved in programming and they note that
"..programmer must comprehend the problem to be solved by the program, design an
algorithm to solve the problem, code the algorithm into a conventional programming
language, test the program and make modifications in the program...In sum,
programming is a complex cognitive and social task composed of a variety of interacting
subtasks and involving several kinds of specialized knowledge..". Programming therefore
is a creative activity which involves synthesis of a variety of knowledge and, as noted
earlier, is therefore a higher level learning process that requires mastery of at least
knowledge, comprehension and application. It may be that requiring synthesis early in an
introductory course is bound to create problems if the student has not acquired the
relevant knowledge, comprehension and application prior to starting the course.

-5-

www.manaraa.com

Although the above approach of teaching introductory courses for the computer science
majors is common, some educators recommend a similar approach for non-majors.For
example, Biermann (1994) recommends that a significant part of a course for non-majors
be programming. The author claims that one of the reasons for teaching programming in
an introductory course is thatit catches the attention of students....Most students enjoy the
[programming] experience and want to show off their programs! The author notes other
reasons for teaching programming and notes that programming conveys a kind of
intuition about computers and programming experience is excellent for teaching notation.
This is hardly a convincing argument in our view.

The conventional approach we believe has several significant disadvantages. The
apprenticeship approach appears suitable only for learning trade or technical skills and is
perhaps not suitable for learning conceptual material. Also, apprenticeship approach is
often ineffective due to a lack of staff resources and results in average students constantly
battling with programming assignments and thus having no time to consider the
conceptual basis of the discipline. Due to heavy assignments workload many such
students drop out or switch to other disciplines after (or before!) completing the first
course in computer science. Also, the introductory curriculum itself often is not
particularly suitable since it conveys to the students a very limited view of computer
science. Thestudents are given the impression that a computing professional is
constantly been given problems to solve which he/she must find solutions to and code the
solutions and debug and document that code. This is far from the true nature of work of a
computing professional.

Given the conventional curriculum, it is no wonder that many students remark that
computer science is just programming; that is what we tell the students in our
introductory courses as noted by Denninget al (1989):

The view that "computer science equals programming" is especially strong in most of
our current curricula: the introductory course is programming, the technology is in our
core courses, and the science in our electives. This view blocks progress in reorganizing
the curriculum and turns away the best students, who want a greater challenge.The
emphasis on programming arises from our long-standing belief that programming lan-
guages are excellent vehicles for gaining access to the rest of the field, a belief that limits
our ability to speak about the discipline in terms that reveal its full breadth and richness.
....... Clearly programming is part of the standard practices of the discipline and every
computing major should achieve competence in it. This does not, however, imply that the
curriculum should be based on programming or that the introductory courses should be
programming courses.[emphasis added]

Another significant disadvantage of the conventional approach is that the introductory
curriculum is too dependent on changes in technology which an introductory course
ought not to be. New programming languages and new programming paradigms often
need to be reflected in the introductory courses and the curriculum discussions in
computer science departments are often dominated by whether the programming
language being used needs to be changed to the latest one to the neglect of more
important issues. Such language discussions have been known to turn into religious wars
that can do serious damage to the fabric of a department. Programming of course not

-6-

www.manaraa.com

only plays a central role in introductory courses, it tends to play a central role in most
subsequent courses since the attitude that one can only learn by implementing pervades
the whole conventional computer science curriculum. Given this approach, a change in
programming language used in the introductory course can bring havoc to the whole
curriculum which can consume enormous amount of invaluable staff resources in revising
the course materials.

To summarise, we believe the current introductory computer science courses have the
following problems:

(1) thecurriculum focuses on programming and algorithmic computation and does
not present a broad picture of computer science

(2) thecurriculum requires too much programming which is often intimidating for at
least a significant minority of students, perhaps more so with the female students

(3) thecurriculum uses an apprenticeship approach which is unsuitable for some
types of learning and the approach is often very time consuming for most
students given the lack of staff resources; the high workload often results in
students either dropping out of the computer science course or neglecting their
other studies

(4) thepass rates in courses based on such curriculum are often low and the drop-out
rates high; retention of less than 50% after first year courses appears common but
in our view unacceptable

(5) althoughthe programming assignments can be time-consuming, the curriculum
conveys few intellectual challenges to some of the brightest students

3. A New Approach to Teaching Computer Science
We believe a different approach to teaching computer science is needed not only because
the present approach suffers from significant difficulties but also because computing and
the computing industry have changed dramatically over the last four decades. In the early
days the primary concern was to keep the hardware running and its efficient use.With
more reliable hardware, the concern shifted to system software and then to application
software. Theconcern is now shifting to information storage, retrieval, display and
presentation. Asa result, the role of programming and growth in jobs for programmers
have diminished considerably in the industry (Keaton and Hamilton, 1996) and instead
there are significantly more opportunities for people with a variety of other skills (e.g.
networking, Web applications).We believe a new curriculum should meet a variety of
needs of the industry, not be technology driven, provide a good introduction to computer
science, and be realistic for the educational environment. To be realistic, for example in
Australia, the curriculum must take into account the fact that a large number of students
now enter universities without adequate preparation in mathematics. Furthermore, the
curriculum must take into account that not all students studying computer science are
going to be very proficient in programming and software development and some may not
be capable of or interested in becoming software developers although still interested in
developing some computing knowledge and expertise. Furthermore,many degree

-7-

www.manaraa.com

programs, for example those in Australia, are of only three-year duration and therefore
the course time is a very limited resource which must be used wisely. This clearly
suggests that proposals like those of Dijkstra (Denning, 1989) in which he suggests that
each program must be accompanied by a formal proof that it meets the formal
specifications and those of Parnas (1990) in which he proposes a computing program that
is a five-year engineering degree (and does not even provide an introduction to data base
management) are not worth considering since they propose solutions that in our view are
unrealistic.

Computer systems consist essentially of hardware, software and the information that they
process. Taking a rather simple view, one could say that these three components are the
centre of attention in the three computing disciplines viz. computer systems engineering,
computer science, and information systems. The information systems view of
information is however very limited since that discipline is primarily concerned with role
of information in decision-making. Information has many dimensions and in fact meets
many needs in addition to that of decision-making and all computing essentially deals
with information. We propose that a very much broader view of information be the basis
of computer science curriculum and we agree with Denning (1995) that a computer
science program should be taught as the science of information. Computer science
should therefore have the concept of information, its manipulation, communication and
display as its focus rather than algorithmic computation. As Denning notes, information
is a powerful metaphor, often compared with fluid that can flow, hav ea source, and be
extracted, transformed, acquired and contained; data, symbols, signals and messages are
carriers of the fluid of information. Just as phenomena surrounding fluids are worthy of
scientific study, so are phenomena surrounding information, only more so since
information is now so much more widely used.

If information, its manipulation, communication, and display are to be the central concern
of computer science, the introductory computer science course as well as the courses that
follow will be significantly different than what we teach today. As an example, we
propose that an introductory course consist of the following topics; the details are
presented in the next section:

(1) theconcept of information, its many forms, its storage and retrieval; its value, the
need for many different types of information manipulation.

(2) computersas (simple) machines that manipulate information; a simple
introduction to computer organisation.

(3) theneed to input information to computers and to output information from
computers so that input information may be manipulated and manipulated
information displayed; the need for many different types of input and output.

(4) theneed to store information in computers; techniques for storing and retrieving
information.

(5) theconcept of ownership, availability and fair use of information; issues of
copyright, personal privacy, information rich and information poor, ethics.

-8-

www.manaraa.com

(6) theneed to communicate information from an input device to a computer and
from a computer to an output device; communication of information from one
computer to another.

(7) theneed to manipulate information (mathematical computations, symbolic
computations, intelligence); techniques for simple information manipulation,
complex information manipulation.

(8) instructingthe machine to manipulate information; introduction to one procedural
language; examples of algorithms and their implementations using the language,
debugging, testing, and documentation.

3.1. A Detailed Curricula for CS1
We now present details of the lectures and the laboratory classes of the introductory
curriculum:

(1) The concept of information and its many forms:

What is information?: Its definition and characteristics.

Temporal and non-temporal information.

Non-temporal information: Text; linear and non-linear text; Linear Text: text
without form and text with form; text without form, sequence of characters, how
many different characters, ASCII, ISO character sets, character sets for LOTE;

Te xt with form, need to store content and form both, storing form by using mark-
up languages (troff, latex, SGML, ODA), storing form by specifying form in a
WYSIWIG editor;

Presentation, fonts, device independent fonts, storage and printing of fonts,
geometric descriptions of fonts, kerning, PostScript.

Non-linear form of text: hypertext, representation of hypertext, Web.

Operations on text: retrieval, character and string operations, editing, formatting,
pattern-matching and searching, spell checking, style checking, compression,
encryption.

Images: Image as a two-dimensional array of pixels, monochrome, grey and
colour images; colour models, representation of images. Operations on images:
editing, point operations, filtering, compositing, geometric transformations,
conversions, compression.

Graphics: Difference between graphics and image data; representation of
graphics data, geometric modelling (GKS, PHIGS, etc), solid models, other
models. Operations on graphics data: editing, shading, mapping, lighting,
viewing, rendering.

Temporal Data - Video: Video as sequence of images or frames, analogue video
and digital video, analogue representation and major formats (NTSC, PAL,
SECAM, etc), video storage, digital representation, data rates, digital video

-9-

www.manaraa.com

storage. Operations on video: video sources and sinks, video mixer, retrieval,
editing, compression of digital video, MPEG, JPEG, etc.

Temporal Data - Audio: Digital and analogue audio representation, speech,
encoding, audio formats (CD, DAT , etc). Operations: storage, retrieval, editing
and filtering.

Temporal Data - Music: Difference between music and audio; representing music
(MIDI, SMDL). Operations: playback, synthesis, editing, composition.

Animation- Sequence of synthetic image frames, animation vs video, animation
models. Operations: motion and parameter control, rendering.

Information transformation- Transforming text to audio, speech to text, music to
audio, animation to video, etc. Refer to Gibbs and Tsichritzis (1994) page 77.

Optional: What is knowledge? representing knowledge e.g. plans, games, rules,
etc.; natural language representation and understanding.

Laboratory: Students use softwares that processes textual information e.g. mark-
up languages, WYSIWIG editors, hypertext using the Web and carry out the
operations specified including compression and encryption. Importance of
information presentation.

Students handle a variety of images and use software that carries out operations
on images. Graphics information. Video, audio, speech, music and animation
information and use of softwares for variety of operations on these types of
information.

(2) Information storage and retrieval, value of information, need for many
different types of manipulation, etc .

Manual storage and retrieval of information in society; organisation of large
amounts of information on paper; books, chapters, table of contents, index,
telephone directory, children’s story books that allow the reader some options on
how the story develops, organisation of books in library, files and filing cabinets
in a office, inventories, archiving, introduction of terms like sequential, index
sequential, trees; analogies between manual information handling and
information handling by computers.

Information as a commodity and its unique properties, needs of graphical display
of information, computing aggregate values, and other manipulations.

Laboratory: A study of manual information storage and retrieval. Discussionof
different possible techniques, introduction to some computing terminology.
Discussion of information as commodity and its value, examples of valuable and
useless information. Importance of information presentation.

(3) Computers as (simple) machines that manipulate information; simple
introduction to computer organisation.

-10-

www.manaraa.com

Conceptual model of a computer, computer examples: computer games, ATM, a
computer in a washing machine or a car, large mainframes, desktop, laptop and
mobile computers. Concept of instructing computers; analogies between
instructing a computer and instructing a human worker.

Laboratory: Explore students’ prior experiences with computers, their
understanding of what is inside a computer, show inside of a computer to
students, discuss essential components and logical organisation.

(4) The need to input information to computers and to output information from
computers so that information may be manipulated and manipulated
information may be displayed; The need for many different types of inputs
and outputs.

Input to computers via keyboard, scanners, cameras, speech, instruments, touch
screens, pen, mouse, joystick, etc., conceptual understanding of how these
devices work, importance of of devices like scanners and fax and their working;
importance of user-friendly information input.

Output from computers via monitors, printers of different types, speech, music,
graphical output, control signals, etc; conceptual understanding of how these
devices work, importance of user-friendly information output.

Laboratory: Use a variety of input and output devices, understanding of how
these devices work, importance of user-friendly interaction with computers.

(5) The need to store information in computers, techniques for storing and
retrieving information.

Introduction to storage devices: core memory, disks, CD-ROMS, tapes etc,
introduction to data structures (sequential, indexed sequential, trees, hashing),
concept of relational database and a simple retrieval language; analogies between
manual and computer storage and retrieval of information.

Laboratory: Recall techniques of manual storage and retrieval of information;
present examples where data structure is important; simple relational database
representation, simple retrieval language, use of a PC database system.

(6) The concept of ownership, availability and fair use of information; issues of
copyright, personal privacy, information rich and information poor, ethics.

Who owns information? access to information held by public and private
organisations, intellectual property rights, concept of information privacy,
information privacy principles, information society, concept of information rich
and poor societies, ethics for information processing professionals.

Laboratory: Recall value of information discussion, difficulties in obtaining
relevant information, role of technologies like the Web in making information
accessible, discussion of ownership of information and intellectual property, IP
rights on the Web, cases of violation of privacy using database systems, credit

-11-

www.manaraa.com

data, medical data,etc, ethical behaviour by computing professionals, code of
ethics of medical and legal professions.

(7) The need to communicate information from an input device to a computer
and from a computer to an output device; also sending information from one
computer to another.

Computer communications, email, internet, www, networks, mobile computing,
conceptual understanding of how they work.

Laboratory: Hand-on experience with computer communications, role of
communications in modern computing industry, use of variety of tools that
require communications e.g. email, internet, WWW and how they work,
ev olution of mobile computing, demonstration of mobile computing.

(8) The need to manipulate information (mathematical computations, symbolic
computations, intelligence); techniques for simple information manipulation,
more complex information manipulation.

Information manipulation via available packages, word processing, spreadsheets,
graphics packages, mathematical computation packages, expert systems.
Examples where a package will not do the job.

Laboratory: Use of variety of packages to illustrate how off -the-shelf software
can meet a variety of information manipulation needs. Recall word processors for
textual and some graphical information, spreadsheets for simple calculations,
discussion of conceptual basis of how these tools work, graphics packages for
data visualisation, packages for mathematical computations, authoring systems,
expert systems, etc.

(9) The need to specify information manipulation to the machine; introduction
to one procedural language; examples of algorithms and their
implementations using the language, debugging, testing, and documentation.

Procedural and non-procedural languages, machine code, assembler, components
of a procedural language, introduction to one procedural languages, examples of
algorithms, simple programs implementing those algorithms, extension of those
algorithms and programs, the importance of debugging, testing, and documenting
software.

Laboratory: Discussion of what a language must be able to do to provide
instructions to a machine; procedural instructions using machine language,
assemblers, and a modern procedural language; example of one non-procedural
languages; discussion of algorithms for simple problems, problem solving, study
of programs that implement these algorithms, solve a slightly changed problem
by modifying the algorithm and the program, discussion of debugging, testing
and documentation.

A major disadvantage of this approach clearly is that there is little teaching material
available, although the books by Machlup and Mansfield (1983) and Gibbs and

-12-

www.manaraa.com

Tsichritzis (1994) provide valuable resource material. The above approach however
offers significant advantages that we now discuss. Inour view, the approach leads to a
much more comprehensive view of computer science with the role of programming more
clearly defined. The approach we hope is less time-consuming for the student since it is
not driven by programming assignments. Learning of programming takes place at a
much more gentle pace allowing the student the time to develop the knowledge,
comprehension and application that is required. Also, the approach allows a student who
has only limited interest in computer programming to take the core computer science
courses perhaps with their other academic interests (e.g. mathematics, visual art). Also,
this course could well be more enjoyable for female students given the reduced emphasis
on programming. Furthermore, the course allows the students to develop a good
conceptual understanding of the basic software tools like word processors, spreadsheets,
DBMS, Internet and the Web and some mathematical software and provides them with an
understanding of devices that they are likely to have used already (e.g. fax, scanner, CD).
A student is also able to build insight by making connections between information
processing by computers and information processing in the real world. Andfinally, as
more and more students come to universities after having learned some computing, this
course provides them a very different introduction to computing, an introduction that
provides a better understanding of the discipline.

4. Courses that Follow
It is not possible in this short paper to present a whole computer science curriculum.We
however present a framework that we believe could be followed.

In designing the courses that follow, we use an approach that provides for considerable
flexibility. The approach allows for a mathematically inclined student who does not wish
to take too much programming to take a number of courses that involve little
programming. Astudent more interested in programming is allowed considerable choice
of software engineering projects that should provide him/her an excellent background in
software development.

We divide our curriculum in three streams; science of information, design and
implementation, and theory and analysis. The science of information courses essentially
deal with information representation, storage, retrieval, communication, and presentation
but do not include detailed analysis and implementation. Analysis and other theory is
covered in the theory and analysis stream of courses while the implementation is covered
in design and implementation software engineering group project courses that bring
together material from a number of courses and include significant software development.

(1) SIcourses - a number of courses in what we call science of information, some of
these form the core.

(2) DI courses - a number of design and implementation software engineering group
project courses that are optional.

(3) TA courses - a number of theory and analysis courses that are optional and
require good mathematical preparation.

-13-

www.manaraa.com

The above classification allows a number of different groups of students to follow
different curriculum as follows:

(a) Service teaching: students who have no deep interest in computer science but wish
to learn some computing and some computing tools take the core courses but do not
need to take courses in theory or design and implementation.

(b) Mathematically inclined non-majors interested in computer science: Such students
take the core courses and may take some theory courses. They do not need to take
any design and implementation courses.

(c) Computer Science majors without sufficient mathematics background: Such students
take the core courses and the design and implementation courses but do not take the
theory courses.

(d) Computer Science majors with sufficient mathematics background: Such students
take the core courses, the theory courses and also the design and implementation
courses. Thisis the background that should be required for students who wish to
continue to postgraduate studies in computer science.

We now briefly discuss some of the courses.

4.1. SI Courses
A number of SI courses need to be developed and some of them should be part of the
core that every student should be required to do. Let the courses be labelled SI1, SI2,
SI3, etc.

SI1 has already been presented in the last section. SI2 and SI3 may consist of the
following:

Information storage and retrieval - memories, data structures, databases and artificial
intelligence.

SI4 and SI5 may consist of the following

Information input/output, human machine interaction, graphics, image processing ??

SI6 may consist of the following:

Computer architecture

SI7 may consist of the following:

Information communication, information security network, parallel processing,
compilers

4.2. DI Courses
The design and implementation software engineering project courses essentially deal with
implementation of techniques that have been covered in the core SI courses. Each DI
course should be provided more staff resources than each of the SI or TA courses.
Perhaps each DI course could consist of two lectures per week and a four-hour practical
session each week compared to three lectures and a 2-3 hour tutorial each week. Each
course will consist of one major group project and may have some much smaller

-14-

www.manaraa.com

individual assessment items. At least one DI course is proposed for each year in a three-
year degree program.

The course DIP1 may consist of the following:

Procedural programming, design and implementation of a group project.

DIP2 may consist of the following:

Techniques and Tools - programming languages, software engineering, object-
oriented programming etc. Group project involving data structures and algorithms
and/or database management system.

DIP3 may consist of the following:

A group project dealing with one of several aspects of computer science e.g.
artificial intelligence, graphics, image processing, etc.

4.3. TA Courses
A number of courses, perhaps two or three, will be needed in this area. The topics to be
covered include the following:

Limits and complexity of information manipulation, analysis of algorithms,
computability, finite state automata, formal languages, grammars etc

5. Conclusions
Given the dramatic changes in computing and the computing industry, a question that
must be asked is "are the traditional curricula becoming obsolete and have they perhaps
outlived their usefulness?".We are inclined to believe that they hav eand that is why we
propose an alternate approach to designing computer science curriculum.We hav e
presented an introductory computer science curriculum that is significantly different than
any proposal that we know. The proposed curriculum is, in our view, exciting since it
approaches computer science from an information focussed point of view which enables
a much broader view of computer science to be presented in the first course.

The new approach has a number of other advantages. Theproposal defers and isolates
major programming to the design and implementation group project courses where the
primary focus is on implementation and where we believe sufficient staff resources ought
to be provided to guide the students to good implementations. This approach we believe
reduces the frustration and workload in the first course allowing the student to focus on
the conceptual basis of the discipline. The introductory course uses computer as a tool
which is likely to be more interesting to students rather than a machine which must be
tamed, something that perhaps the male students enjoy more. Theintroductory course
also provides conceptual understanding of a number of useful computing tools e.g. word
processors, spreadsheets, Internet and the Web, mathematical software and DBMS.
Furthermore, the course provides the students an understanding of devices that they are
likely to have used already e.g. a CD, video, fax, scanner etc and makes a connection
between information processing by computers to that in the real world.

-15-

www.manaraa.com

We recognise that our proposal is not without a number of weaknesses. Firstly, it has not
been tried anywhere and it is therefore difficult to predict the reaction of students to such
a radical shift in curriculum.We suspect at least a number of students who are very keen
to get on with the ’real computing’ (i.e. programming) may well be disappointed but we
are hopeful that even these students would find the group project environment early in the
program more interesting compared to the small programming assignments normally
given in the introductory courses.

Acknowledgements
A number of people have helped me in putting these ideas together. It is a pleasure to
thank Reinhart Gillner, Shyam Kapur, Bruce Litow, Tony Sloane, Rodney Topor, Chris
Wallace, and David Wessels.

6. References
(1) ACM Curriculum Committee on Computer Science, Curriculum 68:

Recommendations for the undergraduate program in computer science,
Communications of the ACM, Vol 11, No 3, pp 151-197.

(2) ACM Curriculum Committee on Computer Science, Curriculum 78:
Recommendations for the undergraduate program in computer science,
Communications of the ACM, Vol 22, No 3, pp 147-166.

(3) O.Astrachan and D. Reed (1995), AAA and CS1: The Applied Apprenticeship
Approach to CS1, ACM SIGCSE Bulletin, Vol 27, No 1, pp 1-5.

(4) D.Bagert, W. M. Marcy and B. A. Calloni (1995), A Successful Five-Year
Experiment with a Breadth-First Introductory Course, SIGCSE Bulletin, Vol 27,
No 1, pp 116-120.

(5) D.Baldwin, G. Scragg and H. Kooment (1994), A Three-Fold Introduction to
Computer Science, SIGCSE Bulletin, Vol 26, No 1, pp 290-294.

(6) A. W. Biermann (1994), Computer Science for the Many, IEEE Computer,
February 1994, pp. 62-67.

(7) P. J. Denning (Ed.) (1989), Teaching Computer Science, Communications of the
ACM, Vol 32, No 12, Dec 1989, pp 1397-1414.

(8) P. J. Denning, D. E. Comer, D. Gries, M. C. Moulder, A. B. Tucker, A. J. Turner
and P. R. Young (1989), Computing as a Discipline, Communications of the
ACM, Vol 32, No 1, pp 9-23.

(9) P. J. Denning (1995), Can There be a Science of Information?, ACM Computing
Surveys, Vol 27, No 1, March 1995, pp 23-25.

(10) M.V. Doran and D. D. Langan (1995), A Cognitive-Based Approach to
Introductory Computer Science Courses: Lessons Learned, SIGCSE Bulletin, Vol
27, No 1, pp 218-222.

(11) S.J. Gibbs and D. C. Tsichritzis, Multimedia Programming, Addison-Wesley,
1994.

-16-

www.manaraa.com

(12) L.Goldschlager and A. Lister (1988), Computer Science: A Modern Introduction,
Second Edn, Prentice Hall.

(13) J.Hartmanis and H. Lin (1995), Computing the Future: A Broader Agenda for
Computer Science and Engineering, National Academy Press, Washington, DC,
1992.

(14) M.Klawe and N. Leveson (1995), Women in Computing: Where are We Now?,
Communications of the ACM, Vol 38, No 1, Jan 1995, pp 29-35.

(15) J.Keaton and S. Hamilton (1996), Employment 2005: Boom or Bust for
Computer Professionals, IEEE Computer, May 1996, Vol 29, No. 5, pp. 87-98.

(16) E.P. Koffman, P. L. Miller and C. E. Wardle (1984), Recommended Curriculum
for CS1: 1984 a report of the ACM Curriculum task force for CS1,
Communications of the ACM, Vol 27, No 10, pp 998-1001.

(17) E.P. Koffman, D. Stemple and C. E. Wardle (1985), Recommended Curriculum
for CS2, CACM, Aug 1985, Vol 28, pp 815-818.

(18) F. Machlup and U. Mansfield, Eds. (1983), The Study of Information :
Interdisciplinary Messages, Wiley.

(19) D.L. Parnas (1990), Education for Computing Professionals, IEEE Computer,
Jan 1990, pp 17-22.

(20) N.Pennington and B. Grabowski (1990), The Tasks of Programming, in
Psychology of Programming, J. -M, Hoc, T. R. G. Green, R. Samurcay and D. J.
Gilmore (Eds.), Academic Press, 1990, pp. 45-62.

(21) R.E. Sabin and E. P. Sabin (1994), Collaborative Learning in an Introductory
Computer Science Course, SIGCSE Bulletin, Vol 26, No 1, pp 304-308.

(22) G.Scragg, D. Baldwin and H. Kooment (1994), Computer Science Needs an
Insight-Based Curriculum, SIGCSE Bulletin, Vol 26, No 1, pp 150-154.

(23) M.Shaw (1990), Informatics for a New Century: Computing Education for the
1990’s and Beyond, TR CMU-CS-90-142, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, USA.

(24) A.B. Tucker and P. Wegner (1994), New Directions in the Introductory Computer
Science Curriculum, SIGCSE Bulletin, Vol 26, No 1, pp 11-15.

(25) A.B. Tucker, Editor, Computing Curriculum 1991: Report of the ACM/IEEE-CS
Joint Curriculum Task Force, Available from ACM Press or IEEE Computer
Society Press, 1990.

-17-

